Contents lists available at SciVerse ScienceDirect

ELSEVIER

Review

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Intelligent control of vehicle to grid power

Hamid Khayyam^{a,*}, Hassan Ranjbarzadeh^a, Vincenzo Marano^b

^a School of Information Technology, Deakin University, VIC 3216, Australia
 ^b Center for Automotive Research, Ohio State University, OH 43212, USA

ARTICLE INFO

Article history: Received 5 August 2011 Received in revised form 31 October 2011 Accepted 3 November 2011 Available online 2 December 2011

Keywords: Vehicle to grid Smart grid Battery model Intelligent controller Plug-in hybrid electric vehicle Electric Vehicle

ABSTRACT

Vehicle-to-grid (V2G) describes a system in which plug-in electric vehicles (PEV), which includes all electric vehicles and plug-in hybrid electric vehicles, utilize power by plugging into an electric power source and stored in rechargeable battery packs. PEVs significantly increase the load on the grid, much more than you would see in a typical household. The objective of this paper is to demonstrate the use of intelligent solutions for monitoring and controlling the electrical grid when connected to and recharging PEV batteries. In order to achieve this aim, the study examines the distribution of electricity in the power grid of a large-scale city so that PEVs can tap into the system using smart grid electricity. The electricity grid for the large-scale city is modelled, and it can be shown that the vehicle electrification can play a major role in helping to stabilize voltage and load. This developed grid model includes 33 buses, 10 generators, 3 reactors, 6 capacitors, and 33 consumer centers. In addition, the grid model proposes 10 parking servicing 150,000 vehicles per day. The smart grid model uses intelligent controllers. Two intelligent controllers including (i) fuzzy load controllers and (ii) fuzzy voltage controllers have been used in this study to optimize the grid stability of load and voltage. The results show that the smart grid model can respond to any load disturbance in less time, with increased efficiency and improved reliability compared to the traditional grid. In conclusion it is emphasized that smart grid electricity should contribute to PEVs accessing renewable energy. Although the V2G will play a major role in the future portfolio of vehicle technologies, but does not make much sense if the carbon content of the electricity generated by the grid will not be reduced. Thus, the recourse to renewable energy and other alternatives is crucial. The energy is stored in electrochemical power sources (such as battery, fuel cells, supercapacitors, photoelectrochemical) when generated and then delivered to the grid during peak demand times.

© 2011 Elsevier B.V. All rights reserved.

Contents

1.	Introduction	2
2.	Vehicle to grid (V2G)	2
	2.1. Plug-in electric vehicle	2
	2.1.1. Battery model	2
	2.2. Grid electricity	3
3.	Grid model and assumptions	4
	3.1. Intelligent controllers	4
	3.1.1. Fuzzy load controller (FLC)	4
	3.1.2. Fuzzy voltage controller (FVC)	5
4.	Simulation methodology	5
5.	Result and discussions	6
	5.1. Simulation 1	6
	5.2. Simulation 2	8
	5.3. Simulation 3	8
	5.4. Discussion	8
6.	Conclusion	9
	References	9

* Corresponding author. Tel.: +61 52273434; fax: +61 352272167. *E-mail addresses*: h.khayyam@deakin.edu.au, hamid.khayyam@ymail.com (H. Khayyam).

^{0378-7753/\$ –} see front matter @ 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jpowsour.2011.11.010

1. Introduction

Plug-in electric vehicles (PEVs), which include pure electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs), provide a new opportunity to deliver fuel consumption and exhaust emission reductions by drawing power from the electric power grid. EVs utilize one or more electric motors and batteries for propulsion, while PHEVs have both an internal combustion engine and batteries for propulsion. However, it is necessary to know when PEVs are connected to the grid, and are available for charging and discharging. Therefore, the Energy Storage System (ESS) of PEVs has to monitor the battery State-of-Charge (SOC). Vehicle to grid (V2G) offers a new possibility for the ESS. V2G can be utilized as an electricity consumer and electricity supplier. In recent years a number of studies have researched the V2G concept under different views: (i) connection to the grid [1,2], (ii) pioneer its new markets [3], and (iii) identify ancillary services [3–6]. Such ancillary services aggregate the important roles in a network controlled to transfer power from where it is generated to where it is utilized. In addition, researchers have shown that aggregator services are needed for frequency regulation and balancing, load leveling, and voltage regulation to deal with PEVs while providing power electricity [7]. Guille and Gross [4] proposed a framework that recognized the central role of the aggregator in V2G and can appropriately accommodate its critical role in "collecting" battery vehicles to form aggregations and dealing with Energy Service Providers (ESPs) and the ISO/RTO for the purchase/provision of energy and capacity services. In addition, the framework provided the means for incorporating the computer/communication/control infrastructure to represent the flows between the ESPs or the ISO/RTO and the individual battery vehicles. Saber and Venavagamoorthy [8] used the Unit Commitment (UC) aggregator for V2G. Regarding a number of gridable vehicles in V2G, they showed that the extended UC with V2G makes the problem even more complicated, and they tried to balance between cost and emission reductions for UC with V2G by using the Particle Swarm Optimization (PSO) method. The optimality was pursued only from the perspective of efficient grid operation rather than that of each vehicle. Thus, it was determined to attract the vehicle owners to join the V2G voluntarily. Moreover, when it came to the regulation, the decision strategy should be entirely revised as the pricing mechanism of regulation was based on the available power capacity, not the generation cost. Han et al. [9] proposed an optimal V2G aggregator for frequency regulation. A performance measure was mathematically formulated to maximize revenue. During the formulation, the energy capacity of the battery was considered an important factor, and weight functions were employed to reflect the energy constraint. They employed dynamic programming to compute the optimal charging control for each vehicle. The proposed method applied only to the frequency regulation and other regulation, and load leveling in V2G was not estimated.

Despite the ongoing investigation of aggregators for V2G, there is still a gap. Most of the existing works do not take into account combined roles in uncertain dynamic situation such as the number of vehicles, distributed generation, parking lots (loads), frequency regulation, voltage regulation and load leveling of the associated impacts on the grid management. The general aim of this research is to gain an in-depth understanding of the impact of the plugin electric vehicle and intelligent control of V2G in a large-scale distribution grid.

The introduction of PEVs and the need of fast charging will be a serious challenge for the current grid, since it is not properly optimized to handle such loads, which are quite unpredictable and high-demanding for the distribution networks. Vehicle electrification will play a major role in the future portfolio of vehicle technologies, but does not make much sense if the carbon content of the electricity generated by the grid will not be reduced. Thus, the recourse to renewable energy from sources such as wind generation and solar power and other alternatives is crucial. The energy is stored in electrochemical power sources (such as battery, fuel cells, supercapacitors, photoelectrochemical) when generated and then delivered to the grid during peak demand times.

In can be expected that in the near future, vehicle charging facilities will have multiple energy sources that include electricity from electrical power grid, photovoltaic, fuel cell, etc., and local energy storage units such as batteries, flywheels, ultra-capacitors. An optimized interface that links these energy sources and loads is clearly needed. The tasks of this interface are, but not limited to, optimizing the energy flow between different sources and loads, minimizing the total energy consumption of the system, and providing ancillary functions to the grid.

Thus, the concept of smart grid and intelligent control (combined with proper communication protocol) represents a technology enabler for vehicle electrification and wider penetration of renewable energy into the power grid.

The paper is organized as follows. Section 2 describes the vehicle to grid concept including plug-in electric vehicles and grid power. Section 3 presents the grid model and main assumptions. The simulation methodology is presented in Section 4. The results and associated discussions are explained in Section 5 and finally, the concluding remarks are given in Section 6.

2. Vehicle to grid (V2G)

2.1. Plug-in electric vehicle

The terminology plug-in electric vehicle (PEV) includes pure electric vehicles and plug-in hybrid electric vehicles, and is a vehicle with rechargeable batteries that can be restored to full charge by plugging into an electric power source. However, PEVs are complex, comprising many mechanical, electrical, mechantronic, and electronic components. Their performance can be affected by factors such as road conditions, environmental conditions and driver behaviour [10,11]. Hence, advanced control systems and strategies are often employed to manage the operation of the internal components. Whenever a vehicle is plugged-in at the parking lot charging deck, the battery parameters, like initial State of Charge (SOC), battery available capacity and other user specific details, should be acquired for an optimal energy management.

2.1.1. Battery model

The function of battery in a PEV can vary. The battery may be a major power source, or may be used in conjunction with the primary power source(s) to level out the supply of power to the vehicle drivetrain. As a consequence, the amount of battery power aboard a PEV may vary between single batteries to a pack of many batteries connected together. When using batteries as a primary source of power, the PEV designer becomes concerned with the mass and volume of the battery pack required to meet the power and energy needs of the vehicle. The drive to achieve high power and energy densities has led the PEV community to investigate many types of batteries. The future of battery electric vehicles depends primarily upon the cost and availability of batteries with high energy densities, power density, and long life. Recently, it has been predicted that 100,000 battery-operated vehicles will be sold annually in 2020 in the US and 1.3 million units in the world wide (i.e. 1.8% of the 71 million vehicles) [12]. Furthermore, it is expected that 3.9 million plug-ins and hybrids will be in market in 2020 in the worldwide. There are many types of batteries that are currently being used - or being developed for use in PEVs. The aim of batteries development is to enhance their specific energy along with their energy density (see Fig. 1, extracted from [13,14]).

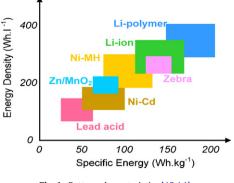


Fig. 1. Battery characteristics [13,14].

Lithium seems an ideal material for a battery. It is the lightest metal in addition to having the highest electric potential of all metals. As it can be seen from Fig. 1 the Li-ion battery has the following advantages: (i) high energy density. (ii) High specific energy. (iii) And low self-discharge rate. In PEVs, the nonlinear nature of the electrochemical processes in the battery is magnified due to dramatic current flowing in and out of the battery and the larger range of the temperature variation. According to the literature [13] batteries models were usually include equivalent circuits. The simplest battery model uses constant discharging and recharging efficiencies neglecting the fact that the power losses are related to the battery current. A simple battery model behaviour [15] which considers the open circuit voltage U_o and the internal resistance R_i is shown in Fig. 2 and used in this study.

The battery current is then derived from power balancing the following equation.

$$P_{\text{batt}} = (U_o - R_i \times I) \times I \tag{1}$$

$$I = \frac{U_o \sqrt{U_o^2 - 4R_i P_{\text{batt}}}}{2R_i} \tag{2}$$

$$U_0 = U_{00}(1 - \text{SOC})$$
 (3)

$$R_i = R_{i0} + R_{i1}(1 - \text{SOC}) \tag{4}$$

where *I* battery current, P_{batt} battery power, R_i battery internal resistance, $R_{i0,1}$ battery internal resistance coefficients, U_o battery open circuit voltage, $U_{o0,1}$ battery open circuit voltage coefficients. The open circuit voltage U_o and the internal resistance R_i are functions of battery the State of Charge (SOC). To indicate the actual charging level of the battery, the SOC is often used. At higher SOC, the battery has larger open circuit voltage and smaller resistance. These two parameters are sometimes regarded as constants since they do not change much over the full battery operating range, e.g. 30-90%. Fig. 3 explains the efficiency of the typical battery during discharging and charging. The battery has a high discharging

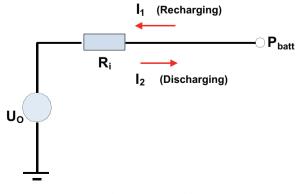


Fig. 2. Battery model.

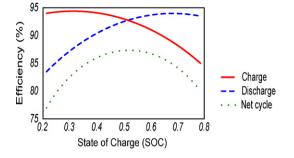


Fig. 3. Typical battery charge and discharge efficiency [16].

efficiency with high SOC and a high charging efficiency with low SOC. The net cycle efficiency [16] has a maximum in the middle range of the SOC. Therefore, the battery operation control unit of a PEV should control the battery SOC in its middle range so as to enhance the operating efficiency and depress the temperature rise caused by energy loss. High temperature would damage the battery.

The battery employed in this study has a capacity of 6.5 A-h and a pack voltage of 273.6 V, and it is composed by 14 cells. The vehicle battery can draw up to 25 kW h from the grid power, depending on charging infrastructure.

2.2. Grid electricity

The electric grid delivers electricity from points of generation to consumers. Due to the characteristics of electric power generation (inefficient at managing peak loads), transmission and distribution, experts have identified local distribution as a likely part of the chain to be adversely affected by unregulated PEV charging. These issues can be addressed by using smart grid electricity. A smart grid focuses on electrical and information infrastructure, and it encompasses three major areas: (i) demand management, (ii) distributed electricity generation, and (iii) monitoring and control. Grid monitoring and control is required to ensure that electric generation matches the demand. If supply and demand are not in balance, generation plants and transmission equipment can shut down which, in the worst cases, can lead to a major regional blackout. The transmission system provides base load and peak load capability, with safety and fault tolerance margins. Controlling and dispatching centers are responsible for management and controlling of connected power networks. The equations below show the total reactive and active power generated and consumed at time t.

$$P_{g}(t) = \sum_{g_{i}=1}^{G} P_{g_{i}}(t), \quad P_{d}(t) = \sum_{d_{i}=1}^{M} P_{d_{i}}(t),$$
$$Q_{g}(t) = \sum_{g_{i}=1}^{G} Q_{g_{i}}(t) \quad Q_{d}(t) = \sum_{d_{i}=1}^{M} Q_{d_{i}}(t)$$
(5)

where $P_g(t)$ is generate active power, *G* is number of generators, $P_d(t)$ is consumption active power, *M* is number of reactors, $Q_g(t)$ is generate reactive power, $Q_d(t)$ is consumption reactive power. The total generated and consumed active and reactive powers of *i*th bus at time *t* are given in following equation.

$$\begin{cases}
P_{i}(t) = P_{gi}(t) + P_{di}(t) \\
Q_{i}(t) = Q_{gi}(t) + Q_{di}(t)
\end{cases} (6)$$

However the limitations of the above equations are as follows:

$$P_{gi\min} \le P_{gi} \le P_{gi\max}, \quad Q_{gi\min} \le Q_{gi} \le Q_{gi\max}$$

$$P_{di\min} \le P_{di} \le P_{di\max}, \quad Q_{di\min} \le Q_{di} \le Q_{di\max}$$
(7)

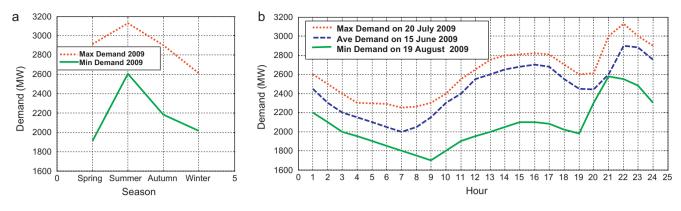


Fig. 4. Demand in large-scale city 2009 (a) seasons, (b) summer.

One aspect of grid management is to provide power reserves to maintain frequency (f), voltage (V), voltage angle (δ_i), and facilitate the efficient handling of imbalances or congestion as shown in following equation.

$$\begin{aligned} f_{\min} &\leq f_i \leq f_{\max} \\ \left| V_{i\min} \right| \leq \left| V_i \right| \leq \left| V_{i\max} \right| \\ \left| \delta_i - \delta_n \right| \leq \left| \delta_i - \delta_k \right|_{\max} \end{aligned} \tag{8}$$

The current injection of *i*th bus is calculated by using following equation.

$$I_i = \sum Y_{ik} V_k \tag{9}$$

where Y_{ik} is the admittance between bus *i* and *k*, I_i is the current of each bus. The admittance is considered from the following equation:

$$Y_{ik} = \left| Y_{ik} \right| \cdot e^{i\theta ik} \tag{10}$$

where θ_{ik} is admittance angle between bus *i* and *k*.

Therefore, the generated active power and generated reactive power can be calculated by Eq. (11) as follows.

$$P_{i} = \left| V_{i} \right| \cdot \sum \left| V_{k} \right| \cdot \left| Y_{ik} \right| \cdot Cos(\theta_{ik} + \delta_{k} - \delta_{i}),$$

$$Q_{i} = -\left| V_{i} \right| \cdot \sum \left| V_{k} \right| \left| Y_{ik} \right| \cdot sin(\theta_{ik} + \delta_{k} - \delta_{i})$$
(11)

Finally, the total balance between electrical power generation and consumption in the grid is found by the following equation.

$$P_{i}(t) = \sum P_{di}(t) + P_{li}(t), \quad Q_{i}(t) = \sum Q_{di}(t) + Q_{li}(t)$$
(12)

3. Grid model and assumptions

The electric grid is a massive and extremely complex system consisting of centralized power plants, transmission lines, and distribution networks. One of the grid principal issues that must be addressed by smart grid is peak load. Peak load is the small period when electricity demand is highest in a day, season, or year. Electricity demand is variable, and can be only partially predicted and managed. Generators must be continuously adjusted to follow power demand; a sample of the traditional power demands in a large-scale city within different year, seasons and for 24 h in summer of 2009, is shown in Fig. 4. As can be seen from Fig. 4(a), the maximum peaks in demand are in summer and according to Fig. 4(b) the maximum peak demand in the summer 2009 is on the 20th of July. Based on the day, the operations of the power network center to guarantee to maintain enough power supply despite peaks in demand with V2G will be carefully managed. A simplified

diagram of a power electrical grid from generation stations to consumers in the large-scale city and its model is shown in Fig. 5. This model includes 33 buses, 10 generators, 3 reactors, 6 capacitors, and 33 consumer centers. In addition, in this model 10 parking lots are designed to hold 150,000 vehicles each day. Table 1 illustrates that the grid model specification.

As clearly shown by Eqs. (1)-(4) – defining battery power balancing- and Eqs. (5)-(12) – defining power electricity balancingthe integrated battery charging and electrical grid [17] are complex systems comprising conglomerations of equipment all connected electrically. Their performances are affected by uncertain factors such as: loads, voltage and frequency. Intelligent controllers concern highly complex and nonlinear systems that are subject to regular disturbances. The intelligent controllers have been used in several power systems as studied in [18–21].

3.1. Intelligent controllers

Fuzzy controller is an attractive alternative to conventional control methods since it provides a systematic and efficient structure to deal with uncertainties and nonlinearities in complex systems, when an accurate system analytical model is not obtainable, not possible to acquire, or too complicated to use for control principle. As mentioned in previous sections two fuzzy controllers are implemented for grid monitoring and control to ensure that electric generation matches the demand within specific constraints. As shown in Fig. 5, there are some gorge routes and buses [18] within the grid that result in uncertainties and extra disturbances. Therefore, they must be considered for monitoring within intelligent controllers. In this study, the intelligent controllers for V2G are designed for the supply of peak power, balancing control, load leveling, and voltage regulation. The two controllers developed for this study - fuzzy load controller (FLC) and fuzzy voltage controller (FVC) – are described in the next sub-sections.

3.1.1. Fuzzy load controller (FLC)

This intelligent controller is used to control the balancing of some generators and adjusting load demands on the electrical power grid by monitoring load leveling and peak power. As shown in Fig. 6, there are spinning reserves ready to generate and cope with peak demand that is influenced by the demand load of the power grid during the day. The amount of spinning reserves available is determined by previous experience. Spinning reserves generators perform at low or part speed and consequently are already synchronized to the grid. The controller dispatches the demand level by adjusting gorge generators including G2, G3, G7, G8, G11, G12 and consumption powers including B28, B20, B27, B1, B33. The fuzzy load controller (FLC) measures the average of voltages 230 kV and 400 kV, total load grid and total active power

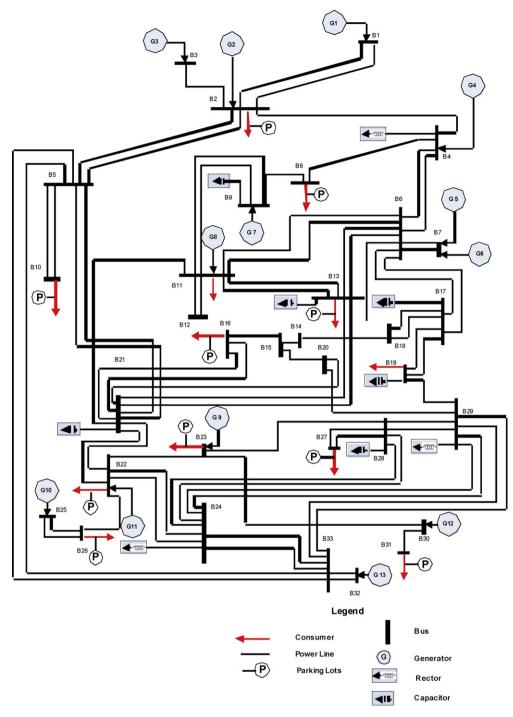
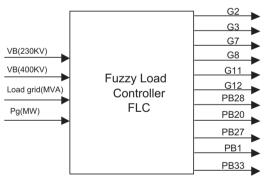


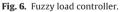
Fig. 5. Grid model layout for large-scale city.

generated. The controller automatically and continually regulates the generation so that it matches the demand loads.

3.1.2. Fuzzy voltage controller (FVC)

This fuzzy controller is used for the control of the grid voltage by adjusting the capacitors and reactors in the power grid. It measures the average of voltages 230 kV, 400 kV, generation and consumption of power reactive from all buses. The controller automatically and continually regulates the voltage and stabilizes the grid to avoid blackouts. As shown in Fig. 5, there are some important buses that influence the stability of the voltage in the power grid and they are obtained by experience. Therefore, the fuzzy voltage controller (FVC) regulates some significant related capacitors including B21, B9, B17, B28, B19, B13 and reactors including B29, B4 and B24 as shown in Fig. 7. The Voltage Disturbances Standard EN 50160 [22] has been obtained for the voltage regulation maintains and the voltage within limits.


4. Simulation methodology


Three simulations were conducted:

- without parking loads (no intelligent control),
- with parking lots loads (no intelligent control),
- and controlled by the intelligent controller of vehicle to grid.

Table 1
Grid model specification.

Bus no.	Voltage (kV)	Gen min (MW)	Gen max (MW)	Gen nor (MW)	Reactor max (MVAR)	Capacitor max (MVAR)	Ave load (MVA)	Parking max capacity (MW day ⁻¹)	Parking demand (MW) During day	Vehicle numbers availability during day
1	400	25	150	100	-	-	20+j5	-	-	_
2	400	250	800	600	-	-	90+j24	320.000	266.724	14,818
3	400	100	600	400	-	-	100+j25	-	-	-
4	400	25	50	25	100	-	30+j6	-	-	-
5	400	-	-	-	-	-	50+j15	-	-	-
6	230	-	-	-	-	-	50+j15	-	-	-
7	230	45,10	90,40	60,40	-	-	17+j7	-	-	-
8	230	-	-	-	-	-	70+j15	290.000	264.600	14,700
9	230	150	450	300	-	40	50+j10	-	-	-
10	230	-			-	-	876+j4	310.000	268.848	14,936
11	230	100	800	600	-	-	10+j5	-	-	-
12	230	-	-	-	-	-	10+j4	-	-	-
13	230	-	-	-	-	20	20+j5	298.000	278.982	15,499
14	230	-	-	-	-	-	20+j4	-	-	-
15	230	-	-	-	-	-	30+j6	-	-	-
16	230	-	-	-	-	-	50+j5	261.000	254.322	14,129
17	230	-	-	-	-	40	15+j2	-	-	-
18	230	-	-	-	-		50+j3	-	-	-
19	230	-	-	-	-	20	30+j10	-	-	-
20	230	-	-	-	-	-	100+j60	-	-	-
21	400	-	-	-	-	60	70+j40	-	-	-
22	230	25	700	500	-	-	50+j10	278.000	272.466	15,137
23	230	75	200	150	-	-	30+j5	300.000	288.108	16,006
24	400	-	-	-	100	-	100+15	-	-	-
25	230	100	500	300	-	-	50+j10	-	-	-
26	230	-	-	-	-	-	200+j10	298.000	287.496	15,972
27	230	-	-	-	-	-	80+j10	272.000	267.102	14,839
28	230	-	-	-	-	20	50+10	-	-	-
29	400	-	-	-	100	-	80+j25	-	-	-
30	230	40	100	50	-	-	70+j15	-	-	-
31	230	-	-	-	-	-	30+j5	292.000	282.654	15,703
32	400	50	700	500	-	-	60+j10	-	-	-
33	400	-	-	-	-	-	100+j20	-	-	-

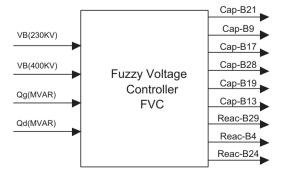


Fig. 7. Fuzzy voltage controller.

In these simulations, a set of data associated with 10 parking including 150,000 PEVs charged at different times, is used (Table 2). The parameter values at the 100% grid to vehicle rate are as follows:

- the vehicle can draw up to 25 kW from the grid, depending on (1 h to charge 25 kW h battery capacity),
- minimum battery capacity = 10 kW h,
- average battery capacity = 18 kW h,
- charging-discharging frequency = 1 per day,
- scheduling period = 24 h,
- min and max State Of Charge = 30–90% respectively.

5. Result and discussions

5.1. Simulation 1

In this simulation, the ordinary grid model without parking lot loads is evaluated and runs for 24 h base on July 20th 2009 generated power and consumer demand.

The results of the first simulation are given in Fig. 8. Fig. 8(a) demonstrates that the ordinary grid model without V2G was operated to ensure enough power generation despite peaks in demand based on July 20th 2009. As can be seen from the figure, the generated power follows the demand power during the day based on Eqs. (5)–(12). The maximum generated power is 3600 MW and maximum power demand is 3250 MW. Fig. 8(b and c) illustrates the average voltage of the 230 kV and 400 kV during the day. These average voltages in non-peak load hours are approximate, with 6% error, and during peak load hours they are approximately stable.

Table 2	
Power capacity demand for 10 parking lots in 24 h.	

61565526601244086534748869128338653478844664428439425400601255085490437444283780419447431751882212252152662191614221882231503384397842303870478839422898435633843774137128175172131115513718119717217246623043150309622382790246632533566496636043203582433651844824468037803510262857064226339340626633031727441827993444443370747308478859405706492275245922546520544538507581479026048837013.3128705580669676955259564662952446953347351245055499525825965225465284975124505545569952536459489453544741741745053955297927936982895	Time (h)	P 2 Veh (No) D (kW)	P 8 Veh (No) D (kW)	P 10 Veh (No) D (kW)	P 13 Veh (No) D (kW)	P 16 Veh (No) D (kW)	P 22 Veh (No) D (kW)	P 23 Veh (No) D (kW)	P 26 Veh (No) D (kW)	P 27 Veh (No) D (kW)	P 31 Veh (No) D (kW)	Total Veh (No) <i>D</i> (kW)
6156 5526 6012 4608 6734 7488 6912 8338 6534 7880 4194 4734 4284 3942 5490 6012 5508 5490 4374 4428 3780 4194 4736 3150 3384 3978 4230 3870 4788 3942 2898 4356 3384 377 4 137 128 175 172 111 155 137 181 197 172 111 2466 2304 3150 3096 2238 2790 2466 3305 3258 3546 3066 2368 4320 3582 4336 5184 4824 4680 3780 3210 2228 5706 422 4420 3582 4336 5184 4854 4656 510 3572 792 616 7074 7208 4788 5940 5706 4922 5724 5724 7992 616 8507 5814 7902 6448 8370 15.312 8772 7992 96 852 5950 521 4946 5753 477 53 472 534 612 5753 476 528 556 6466 629 544 556 556 6466 629 544 556 556 6452 8947 551 450 551 450 551 476 553 477 476	1	342	307	334	256	363	416	384	491	363	438	3694
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1											66,492
4284 3942 5490 6012 5508 5490 4734 4428 3780 4788 3242 4194 4126 21804 4194 4194 4136 31964 31846 3196 3284 3156 31846 3196 3284 3156 31646 31204 31204 4124 4138 3166 31646 3100 3187 4144 31857 31646 3192 3164 4656 3100 3192 3164 4656 3100 3192 3164 4656 3100 3192 3164 4656 3106 3192 3164 3162 31646 31697 31646 31697 3164 3162 3566 3564 4657 3166 3168 3164 3162 3566 3564 3564 3564 3564	2											2639
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	2											47,502
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3											2110
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5											37,980
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4											1585
$ 5 240 199 252 288 268 260 210 195 146 317 22 \\ 4 393 406 266 330 317 274 418 279 304 444 37 \\ 7 393 406 266 330 317 274 418 279 304 444 433 \\ 7 490 325 323 439 336 465 643 2754 522 547 7992 66 \\ 8 507 544 391 527 544 612 595 646 629 544 53 \\ 9 528 5972 7038 9486 9792 11,016 10,710 11,628 11,322 9792 999 \\ 9 582 590 522 546 528 497 553 473 570 497 55 \\ 10,476 9162 9396 9828 9504 8946 9353 4874 512 450 528 55 \\ 10,476 9162 9396 9828 9504 8946 9377 512 450 528 55 \\ 10,656 412 337 474 433 556 412 347 474 50 33 \\ 6 6408 7416 7092 6570 6408 8100 7416 5246 7506 8100 571 \\ 6 6408 7416 7092 6570 6408 8100 7416 5246 7566 8100 71 \\ 6 6408 7416 7092 6570 6408 8100 7416 5246 7566 8100 71 \\ 7704 8406 9792 8406 8046 7434 953 158 1277 116 10,404 123 \\ 13 770 8406 9792 8406 8046 7434 9630 9288 8568 8526 8526 \\ 13 302 516 476 4757 44 \\ 413 3133 159 1277 116 10,404 123 \\ 14 103 1433 1355 1376 1576 1407 1210 1801 2083 1886 \\ 16 1259 13,60 22,868 22,4696 20,322 24,084 20,862 22,986 20,952 24,084 228 \\ 15 19,05 21,368 32,418 22,368 23,352 1160 1263 1849 3138 165 \\ 12,59 13,60 22,868 32,418 22,868 23,352 1159 1277 1164 1348 123 \\ 14 103 1433 1357 1277 1164 1349 123 \\ 14 103 1433 1357 1576 1404 1270 1444 323 \\ 16 1259 1360 23,984 22,986 23,394 22,726 24,944 2388 165 \\ 14,61 1259 1744 24,12 1889 1162 14,044 238 \\ 16 1259 1360 23,94 23,18 7140 238 1857 146 1360 \\ 14,133 1434 12,20 1338 1550 1160 10,43 1836 955 1180 950 148 1001 \\ 14,143 12,28 15,50 1160 1800 17,72 1360 1396 177 \\ 1$	7											28,530
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	5											2375
6 933 406 266 330 317 274 418 279 304 444 932 7 490 325 323 439 336 465 684 465 310 387 44 8820 5850 5814 7902 6048 8370 12.12 8370 5580 6966 76 9126 9792 7038 9486 9792 11.016 10.170 11.628 11.322 9792 99 9 552 590 5522 546 528 497 553 473 570 497 52 10.052 8946 7290 9918 8658 9630 8946 9216 8100 9512 450 551 481 535 447 450 33 10.052 8946 7290 9918 8658 8530 8946 9216 8100 711 12 4243 467 <td< td=""><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>42,750</td></td<>	5											42,750
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6											3431
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0											61,758
	7											4224
8 507 544 391 527 544 612 595 646 629 544 55 9126 9792 7038 9486 9792 11,016 10,710 11,628 11,322 9792 99 9 582 909 582 9504 8846 9954 8514 10,200 8846 947 10,652 8947 405 551 481 535 497 512 450 528 55 10,062 8946 7290 9918 8658 9630 8946 9216 8100 9504 90 11 356 412 394 365 356 450 412 347 417 450 33 11 353 640 6432 632 753 793 706 632 578 63 13302 12,456 11,610 12,466 13,376 13,355 1427 12,708 11,316	/											4224 76,032
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0											
9 582 509 522 546 528 497 533 473 570 497 495 10 559 497 405 551 481 535 497 512 450 528 531 10.062 8946 7290 9918 8658 9630 8946 9216 8100 9504 903 13 356 412 394 365 356 450 412 347 417 450 32 12 428 467 544 467 447 413 535 516 476 457 44 704 8406 9792 8406 8046 7434 9630 928 8568 8226 856 13 730 692 645 692 632 753 793 706 632 578 66 103 1433 1355 1372 1129 13554 1474 120	8											5539
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0											99,702
	9											5277
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10											94,986
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	10											5015
		,										90,270
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11											3959
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												71,262
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12											4750
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												85,500
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13											6862
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												123,516
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14											12,668
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												228,024
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	1970	1576	1801	1576	1576	1407	1210	1801	2083	1886	16,886
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		35,460	28,368	32,418	28,368	28,368	25,326	21,780	32,418	37,494	33,948	303,948
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	16	1259	1356		2131	1259		2412	1889	1162	1405	16,361
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		22,662	24,408	31,392	38,358	22,662	31,392	43,416	34,002	20,916	25,290	294,498
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	1043	1391	956	1043	1434	1202	1333	1507	1362	1396	12,667
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		18,774	25,038	17,208	18,774	25,812	21,636	23,994	27,126	24,516	25,128	228,006
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	1025	1236	955	1188	1081	836	955	1180	920	1180	10,556
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		18,450	22,248	17,190	21,384	19,458	15,048	17,190	21,240	16,560	21,240	190,008
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	19	1039	784	975	902	580		984	875	957	875	8973
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		18,702	14,112	17,550	16,236	10,440	18,036	17,712	15,750	17,226	15,750	161,514
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	801	681	862	590	696	622	870	718	741	809	7390
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		14,418	12,258	15,516	10,620	12,528	11,196	15,660	12,924	13,338	14,562	133,020
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	21											5013
22 416 371 466 506 393 586 438 607 495 472 446 7488 6678 8388 9108 7074 10,548 7884 10,926 8910 8496 855 23 272 289 303 289 267 244 211 239 272 253 22 4896 5202 5454 5202 4806 4392 3798 4302 4896 4554 472 24 227 246 223 268 284 202 277 221 214 214 224 4086 4428 4014 4824 5112 3636 4986 3978 3852 3852 422 Total 14,818 14,700 14,936 15,499 14,129 15,137 16,006 15,972 14,839 15,703 151		8586	7992	9342	7776	9108	9954	8586	7920	9414	11,556	90,234
7488 6678 8388 9108 7074 10,548 7884 10,926 8910 8496 855 23 272 289 303 289 267 244 211 239 272 253 272 4896 5202 5454 5202 4806 4392 3798 4302 4896 4554 477 24 227 246 223 268 284 202 277 221 214 214 224 4086 4428 4014 4824 5112 3636 4986 3978 3852 3852 422 Total 14,818 14,700 14,936 15,499 14,129 15,137 16,006 15,972 14,839 15,703 15,157	22	416	371	466	506	393	586	438	607	495		4750
23 272 289 303 289 267 244 211 239 272 253 22 4896 5202 5454 5202 4806 4392 3798 4302 4896 4554 47 24 227 246 223 268 284 202 277 221 214 214 22 4086 4428 4014 4824 5112 3636 4986 3978 3852 3852 422 Total 14,818 14,700 14,936 15,499 14,129 15,137 16,006 15,972 14,839 15,703 151												85,500
489652025454520248064392379843024896455447242272462232682842022772212142142240864428401448245112363649863978385238523852422Total14,81814,70014,93615,49914,12915,13716,00615,97214,83915,703151	23											2639
24 227 246 223 268 284 202 277 221 214 214 22 4086 4428 4014 4824 5112 3636 4986 3978 3852 3852 422 Total 14,818 14,700 14,936 15,499 14,129 15,137 16,006 15,972 14,839 15,703 151												47,502
4086 4428 4014 4824 5112 3636 4986 3978 3852 3852 42 Total 14,818 14,700 14,936 15,499 14,129 15,137 16,006 15,972 14,839 15,703 151	24											2376
Total 14,818 14,700 14,936 15,499 14,129 15,137 16,006 15,972 14,839 15,703 151												42,768
	Total											151,739
266,724 264,600 268,848 278,982 254,322 272,466 288,108 287,496 267,102 282,654 2,731.	Total			,					,			2,731,302

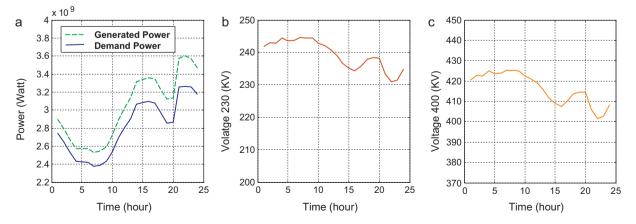


Fig. 8. Results of simulation 1. (a) Generated power and demand load, (b) average 230 kV, and (c) average 400 kV.

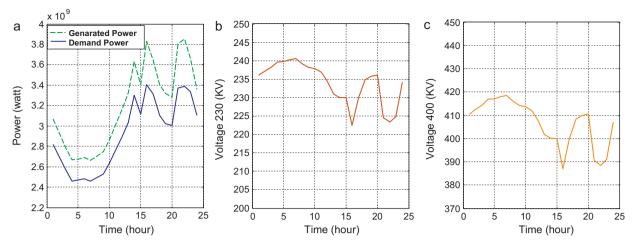


Fig. 9. Results of simulation 2. (a) Generated power and demand load, (b) Average 230 kV and Average 400 kV.

5.2. Simulation 2

The ordinary grid model with parking lot load is evaluated and runs for 24 h based on July 20th 2009 generated power and consumer demand.

The results of the second simulation are given in Fig. 9. Fig. 9(a) gives the ordinary grid model with V2G was operated to ensure enough power generation despite peaks in the demand based on July 20th 2009. As can be seen from the figure, the generated power follows the demand power during the day based on Eqs. (5)–(12). The maximum generated power is 3850 MW and maximum demand power is 3405 MW. This figure demonstrates that using V2G services on peak loads demand from all consumers including gridable vehicles and others, the maximum power demand increased to 3450 MW and the generators are required to add power from spinning reserves. These disturbances affect the grid system: the average voltages are not stable and Fig. 9(b and c) confirm the instability. These average voltages in non-peak loads hours have approximately 6% error and during peak load hours they have approximately 10% error.

5.3. Simulation 3

The grid model employing the algorithm intelligent control vehicle to grid is evaluated using a set of data associated with combined parking lot loads similar to simulation 2.

The results of the third simulation are given in Fig. 10. Fig. 10(a) illustrates that the intelligent grid model with V2G was operated to ensure enough power generation despite peaks in demand based on July 20th 2009. As can be seen from the figure the generated power follows the demand power during the day based on Eqs. (5)–(12). The maximum generated power is 3650 MW and maximum power demand is 3350 MW. This figure demonstrates that using V2G on peak load demand from all consumers including gridable vehicles and others, the maximum power demand increased to 3650 MW and the generators are required to add power from spinning reserves. Also it illustrate that intelligent controllers reduce unnecessary loads on peak load hours if they cannot produce the power. The intelligent controllers ensure that enough power is generated despite peaks within stability constraints, as shown in Fig. 10(b) and (c). These average voltages in non-peak load hours have approximately 6% error and during peak load hours they are approximately normal.

5.4. Discussion

Results show that the intelligent controllers developed for this work can achieve the balance of the generated and demand power, while controlling the average voltage of 230 kV and 400 kV. In addition, comparing Figs. 9 and 10, it is clear that the intelligent controllers can reduce power losses (increased due to the added PEV charging infrastructure), especially in

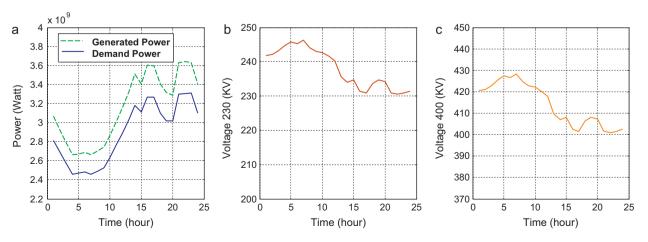


Fig. 10. Results of simulation 3. (a) Generated power and demand load, (b) average 230 kV, and (c) average 400 kV.

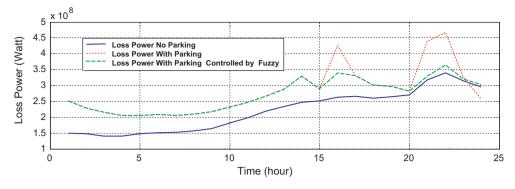


Fig. 11. Loose power results of simulations.

peak hours. Fig. 11 demonstrates the loss power for the cases without intelligent control (with and without parking lots) and with intelligent controllers. The figure also confirms that the intelligent controllers can increase the efficiency of the power grid.

6. Conclusion

A significant deployment of plug-in electric vehicles over the next few decades would represent a major drain on the electric power grid. Plug-in electric vehicles are gradually being connected to the power grid, thus rising further concerns on grid stability and control. In order to support a wide penetration of PEVs and renewable power plants into the energy scenario, it is key to develop intelligent systems that can interface the grid (not designed or suitable for this complexity) with these cleaner technologies. Due to the nature of the charging cycles of plug-in electric vehicles, intelligent controller solutions have been used in this study to monitor and control the electrical grid in real time. In order to achieve this, smart grid technology has been developed to play a major role in vehicle electrification and to help stabilize voltage and frequency to reduce the need for spinning reserves when PEVs are connected to grid electricity. A power electrical grid from generation stations to consumers in the large-scale city has been modelled. This grid model included 33 buses, 10 generators, 3 reactors, 6 capacitors, and 33 consumer centers. In addition, 10 parking lots with the infrastructure to charge up to 150,000 vehicles per day has been planned within the grid model. The grid model becomes "smart" by using intelligent controllers. Two intelligent controllers including (i) fuzzy load controller and (ii) fuzzy voltage controller have been used in this study to optimize the grid stability of load and voltage. The results show that the developed smart grid can react to any disturbance in less time and stabilize the grid perfectly. Although the V2G will play a major role in the future portfolio of vehicle technologies, but does not make much sense if the carbon content of the electricity generated by the grid will not be reduced. Thus, the recourse to renewable energy from sources such as wind generation and solar power and other alternatives is crucial.

The energy is stored in electrochemical power sources (such as battery, fuel cells, supercapacitors, photoelectrochemical) when generated and then delivered to the grid during peak demand times. According to vehicle expected to be sold in next few decades, the advanced battery types promise to be greater cycle depth, power and energy capacity with low cost and availability. Therefore it needs to study and research more.

References

- J. Tomic, W. Kempton, Using fleets of electric-drive vehicles for grid support, Journal of Power Sources 168 (2007) 459–468.
- [2] S.D. Jenkins, J.R. Rossmaier, M. Ferdowsi, Utilization and effect of plug-in hybrid electric vehicles in the United States power grid, in: Presented at the IEEE Vehicle Power and Propulsion Conference (VPPC), Harbin, China, 2008.
- [3] W. Kempton, J. Tomic, Vehicle-to-grid power implementation: from stabilizing the grid to supporting large-scale renewable energy, Journal of Power Sources 144 (2005) 280–294.
- [4] C. Guille, G. Gross, A conceptual framework for the vehicle-to-grid (V2G) implementation, Energy Policy 37 (2009) 4379–4390.
- [5] C. Quinn, D. Zimmerle, T.H. Bradley, The effect of communication architecture on the availability, reliability, and economics of plug-in hybrid electric vehicleto-grid ancillary services, Journal of Power Sources 195 (2010) 1500–1509.
- [6] W. Kempton, V. Udo, K. Huber, K. Komara, S. Letendre, S. Baker, D. Brunner, N. Pearre, A Test of Vehicle-to-Grid (V2G) for Energy Storage and Frequency Regulation in the PJM System, University of Delaware, Pepco Holding, Inc., PJM Interconnect and Green Mountain College, 2008.
- [7] K. Clement-Nyns, E. Haesen, J. Driesen, The impact of vehicle-to-grid on the distribution grid, Electric Power Systems Research 81 (2011) 185–192.
- [8] A.Y. Saber, G.K. Venayagamoorthy, Intelligent unit commitment with vehicleto-grid – a cost-emission optimization, Journal of Power Sources 195 (2010) 898–911.
- [9] S. Han, S. Han, K. Sezaki, Development of an optimal vehicle-to-grid aggregator for frequency regulation, IEEE Transaction on Smart Grid 1 (2001) 65–71.
- [10] H. Khayyam, A.Z. Kouzani, E.J. Hu, An intelligent energy management model for a parallel hybrid vehicle under combined loads, in: IEEE International Conference on Vehicular Electronics and Safety Columbus, OH, USA, 2008, pp. 145–150.
- [11] H. Khayyam, A.Z. Kouzani, S. Nahavandi, V. Marano, G. Rizzoni, Intelligent energy management in hybrid electric vehicles, in: Energy Management, Francisco Maciá Pérez (ed), Vienna, Austria, 2010, pp. 147–175, ISBN 978-953-307-065-0, IN-TECH.
- [12] J.D. Power, Associates, Drive Green 2020: More Hope than Reality? 2010.
- [13] U.S.D.O.E, Energy storage research and development Energy Efficiency and Renewable Energy Vehicle Technologies (2008).
- [14] M. Debert, G. Colin, M. Mensler, Y. Chamaillard, L. Guzzella, Li-ion Battery Models for HEV Simulator, RENAULT, 2008.
- [15] V.H. Johnson, Battery performance models in ADVISOR, Journal of Power Sources 110 (2002) 321–329.
- [16] M. Ehsani, Y. Gao, S.E. Gay, A. Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles, CRC PRESS, New York, 2005.
- [17] A. Bose, Power system stability: new opportunities for control, in: D. Liu, P.J. Antsaklis (Eds.), Chapter in 'Stability and Control of Dynamical Systems and Applications', Birkhäuser, Boston, 2003.
- [18] C.C. Lee, Fuzzy logic in control systems: fuzzy logic controller, Part II, IEEE Transactions on Systems, Man and Cyberneticts 20 (1990) 419–435.
- [19] A.C.M. Valle, A.O. Borges, G.C. Guimarges, H.R. Azevedo, Fuzzy logic controller simulating an SVC device in power system transient stability analysis, in: IEEE Porto Power Tech Conference September, Porto, Portugal, 2001.
- [20] K. Tomsovic, A fuzzy linear programming approch to the reactive power/ voltage control probleml, IEEE Transaction on Power Systems 7 (1992) 287–293.
- [21] R. You, H.J. Eghbali, M.H. Nehrir, An online adaptive neuro-fuzzy power system stabilizer for multimachine systems, IEEE Transactions on Power Systems 18 (2003) 128–135.
- [22] H. Markiewicz, A. Klajn, Power Quality Application Guide (Voltage Disturbances Standard EN 50160 – Voltage Characteristics in Public Distribution Systems), Copper Development Association, Wroclaw University of Technology, 2004.